

Heinz Center 2002 Workshop on Dam Removal Research Hydrologic and hydraulic modeling techniques well-established Need better integration with geomorphologic and biological

- models

 Spatially and temporally varying models
- Small dam (<25 ft, run-of-river) removal impacts fairly well-known on site-specific basis
 - Generalization is next step
 - Landscape-scale studies of watershed impact necessary
 - Large dam impacts not welldocumented
- General direction of changes predictable, but not magnitude
 - Except for hydrology for small runof-river dams or where basin hydrology is well-understood

Dam Decommissioning Workshop, Traverse City MI, 24-25 April 2006

Aspen Institute Forum on Dam Removal

- Flood control alternatives need to be explored if existing dam provides flood attenuation
 - Examine existing flood insurance studies and emergency action plans and evaluate whether restudy is necessary
 - Identify infrastructure upstream and downstream from dam where mitigation is required prior to dam removal
 - Include all areas of potential impact in permit applications

ERDC (Copress Passers) and Revolutional Contra

Dam Decommissioning Workshop, Traverse City MI, 24-25 April 2006

Hydrologic and Hydraulic Data¹

- · Watershed/drainage area
- Rainfall data/records and location
- Stream gage records and location
- Geomorphology
- · Reservoir/river cross-sections
- Estimates of roughness coefficients
- Flood insurance status
- Dam hazard classification
- Emergency action plans
- Published/unpublished flood reports
- Locations/status of nearby dams

¹ Adapted from ASCE 1997

US Army Corps

Dam Decommissioning Workshop, Traverse City MI, 24

Hydrologic and Hydraulic Data¹

- Historical high water marks and flood profiles
- Ice regime
- Hydraulic models (e.g., HEC-1, HEC-2, HEC-RAS)
- Profiles of river, reservoir, groundwater
- Flood frequency profiles(10-, 50-, 100-, 500-yr, etc.)
- Reservoir operating rule/guide curves
- Inflow hydrograph/design flood
- Reservoir storage capacity
- · Flood control capability
- Downstream flood control infrastructure

- Existing groundwater elevations
- Water supply/hydropower users
- Inventory of well logs
- Survey of groundwater users
- River and aquifer flow regimes
- River/aquifer chemical analyses

¹ Adapted from ASCE 1997

US Army Corps

Dam Decommissioning Workshop, Traverse City MI, 24-25 April 2006

Hydrologic and Hydraulic Data¹ Bed/Bank sediment **Exposed water surface area** characterization Water temperatures Reservoir width River suspended sediment Width of the active channel Identification of existing wetlands Sediment, sediment, sediment! Characterization of riparian areas ¹ Adapted from ASCE 1997 HAH US Army Corps Dam Decommissioning Workshop, Traverse City MI, 24-25 April 2006

Summary

- H&H is a fundamental aspect of dam decommissioning
 - Floods
 - Droughts
 - Normal flow
 - Flow Duration
 - Velocities
 - Depth
 - Groundwater
- · Geospatial H&H modeling techniques
 - Improve our understanding of river hydraulics under different decommissioning alternatives and resulting impacts on environment
 - Visualization is important in aesthetic, cultural, and other socio-economic considerations

Dam Decommissioning Workshop, Traverse City MI, 24-25 April 2006